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The dynamical breaking of the supersymmetric Higgs model is discussed without adding
the Fayet–Iliopoulos term to the Lagrangian. It is shown, in terms of the Nambu–Jona-
Lasinio mechanism, that the supersymmetry breaking can be realized dynamically in
the supersymmetric Higgs model. The supersymmetry behavior at finite temperatures
is also investigated and it is shown that the supersymmetry broken dynamically at zero
temperature can be restored at finite temperatures.
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1. INTRODUCTION

The spontaneous breaking of supersymmetry and its behavior at finite temper-
atures has been investigated by many authors (Das and Kaku, 1978; Dicus and Tata,
1984; Fayet and Iliopoulos, 1974; Fuchs, 1984; Girardelloet al., 1981; Hove, 1982;
Iliopoulos and Zumino, 1974; O’raifeartaigh, 1975; Salam and Strasdee, 1974).
The usual method is to add a parity-violating term (Fayet and Iliopoulos, 1974)
(Fayet–Iliopoulos term) to the Lagrangian. The adding of the Fayet–Iliopoulos
term to the Lagrangian leads to mass splitting between bosons and fermions in the
supermultiplets and, hence, the supersymmetry breaks down spontaneously.

A parallel development is the study of supersymmetry behavior at finite tem-
peratures. Some authors have shown (Das and Kaku, 1978; Girardelloet al., 1981)
that at zero temperature the supersymmetry is not easy to break spontaneously,
but that finite temperatures automatically break the supersymmetry. They argued
that the supersymmetry broken at zero temperature cannot be restored at finite
temperatures. Finite temperatures always break supersymmetry.

However, since supersymmetry is so special, one would like to somehow
maintain it at high temperatures. This prompted Hove (1982) to propose a modified
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definition of order parameters at finite temperatures and to examine supersymmetry
behavior at finite temperatures. Unfortunately, this modified definition of order
parameters still does not lead to the expected behavior of supersymmetry at finite
temperatures.

Some time ago, however, some authors (Cahill, 1991; Kumar, 1990; Song
and Xu, 1993a,b; Wanget al., 2002; Xu and Song, 1992) have again studied super-
symmetry braking and its behavior at finite temperatures. In Xu and Song (1992),
Song and Xu (1993a,b), and wanget al. (2002), it is shown that the supersym-
metry can be broken dynamically without adding the Fayet–Iliopoulos term to the
Lagrangian, and that the supersymmetry broken dynamically at zero temperature
can be restored at finite temperatures.

The purpose of the present paper is to investigate the behavior of the supersym-
metric Higgs model (Fayet, 1976; Fayet and Ferrara, 1977) at finite temperatures
in terms of the Nambu–Jona-Lasinio (NJL) mechanism (Nambu and Jona-Lasinio,
1961). The key point of our method is to establish the self-consistency equation for
the order parameter at finite temperatures and to solve the self-consistency equa-
tion by putting in the momentum cutoff. We will show that the supersymmetry
broken at zero temperature can be restored at a finite temperature.

The paper is organized as follows. In Section 2 we will briefly review the
NJL theory and show, in terms of the NJL mechanism, that the contribution of the
self-energy of the Dirac spinor and the gauge field in the supersymmetric Higgs
model (with the parity-violating parameterξ = 0) generate a nonvanishing vacuum
expectation value of the order parameter and provide different masses to the bosons
and the Dirac spinor in the supermultiplet and, hence, the supersymmetry breaks
down dynamically.

In Section 3 we will investigate the behavior of the supersymmetry at finite
temperatures and shown, by solving the self-consistency equation for the order
parameter at finite temperatures, that the supersymmetry that is broken dynamically
at zero temperature can be restored at a critical temperatureTc =

√
33/
√

10π ,
where3 denotes the momentum cutoff. Finally, we summarize our conclusions.

2. NJL MECHANISM AND DYNAMICAL BREAKING OF
THE SUPERSYMMETRIC HIGGS MODEL

In 1961, Nambu and Jona-Lasinio suggested that the nucleon mass arises
largely as a self-energy of some primary massless fermion fields, and regarded
real nucleons as quasi-particle excitations. The Lagrangian density of the NJL
model is given as

L = L0+ L I , (1)

where the free LagrangianL0 is given by

L0 = −ψ̄γµ∂µψ (2)
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andL I is a four-fermions interaction of the type

L I = g[(ψ̄ψ)2− (ψ̄γ5ψ)2]. (3)

Nambu and Jona-Lasinio introduced a self-energy termδmψ̄ψ to the Lagrangian
(1) and rewrite it as

L = (L0− δmψ̄ψ)+ (L I + δmψ̄ψ) = L ′0+ L ′I , (4)

where

L ′0 = −ψ̄(γµδµ + δm)ψ, (5)

L ′I = g[(ψ̄ψ)2− (ψ̄γ5ψ)2] + δmψ̄ψ. (6)

From Eq. (5) we see that the crucial assumption of the NJL mechanism is
that despite the vanishing of the bare fermion mass, the physical mass m of the
fermion is nonzero. Since the bare fermion massm0 = 0, we havem= δm and so
we obtain the self-consistency equation for the physical mass of fermion:

m= δm=
∑

(p), (7)

in which
∑

(p) is the unrenoralized proper self-energy part of the fermion. Nambu
and Jona-Lasinio have evaluatedm from the self-energy diagram of the fermion
to the first order ing. The result is

m≈ 2igT r SF (0)=
∫

d4 p

(2π )4

8igm

p2+m2
= gm

2π2

[
32−m2 ln

32+m2

m2

]
, (8)

in which32 is the invariant momentum cutoffp2 = 32.
From above discussion we see that in the NJL theory, starting from zero-mass

fermion, one generates the dynamical mass of fermion self-consistently.
Lurie and Macfarlane (1964) have shown the equivalence between Lagrangian

field theory of four-fermion type considered by Nambu and Jona-Lasinio and
a Lagrangian theory of the same fermion fields with coupling of Yukawa
type

LY = L0+ Gψ̄ψ8S+ Gψ̄γ5ψ8P (9)

and obtained the physical fermion mass in the equivalent Yukawa theory in the
same way.

In this paper we utilize the NJL mechanism mentioned above to discuss
the dynamical breaking of the supersymmetric Higgs model (in which we put
the parity-violating parameterξ = 0). The model is based on the field theory
describing the interaction of a vector multipletV = (Vµ, λ, D) with a left-handed
chiral multiplet S= (A, B, ψ, F, G), where all fields are taken to be massless.
All unexplained notation in the present paper can be found in Fayet (1976) and
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Fayet and Ferrara (1977). After elimination of the auxiliary fields, the Lagrangian
density (withξ = 0) has the following form

L = −1

4
VµνVµν − 1

2
i λ̄γ µ∂µλ− i ψ̄Lγ

µDµψL − Dµφ†Dµφ

+ ie
√

2(ψ̄Lλφ + φ†λ̄ψL )− 1

2
|eφ†φ|2, (10)

where

Vµν = ∂µVν − ∂νVµ, Dµ = ∂µ + ieVµ, φ = −i (A− i B)/
√

2. (11)

Without loss of generality we can choose the electric chargee > 0.
We define a Dirac spinorE = ψL + λR, and choose a gauge whereA = 0.

Then the Lagrangian (10) reads

L = 1

4
VµνVµν − i Ēγ µ∂µE − 1

2
∂µB∂µB− 1

2
(eB)2VµVµ

− 1

8

(
eB2

)2− i (eB)Ē E+ eĒLγ
µVµEL . (12)

It describes the self-interaction for a vector multipletV = (Vµ, E, B).
In Eq. (12), if the vacuum expectation value of the real scalar fieldB is

nonvanishing, both of the gauge symmetry and the supersymmetry will be broken
down. We denote the vacuum expectation of the real scalar field as

〈B〉 = v. (13)

Translating the scalar fieldB as

B→ B+ v, (14)

this translating changes the quadratic terms in the Lagrangian (12) into the follow-
ing form

−1

2
(ev)2VµVµ − 3

4
(ev)2B2− i (eV)Ē E, (15)

and from which we obtain the masses of the gauge fieldVµ, the Dirac spinorE,
and the real scalar fieldB as

mV = mE = ev, mB =
√

3/2ev. (16)

which means that either the gauge symmetry or the supersymmetry is broken.
We now introduce the external sourceJB coupled to the real scalar field B,

then the Lagrangian density becomes

L[ J] = L + JB B (17)
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and the equation of motion following from the Lagrangian (17) is given by

hB− e2VµVµB− 1

2
e2B3− ieĒ E = 0. (18)

As usual, the generating functional is given by

Z[ J] =
∫

[dϕ] exp

(
i

h

∫
d4x L[ J]

)
, (19)

where [dϕ] stands generically for all fields. By using the generating functional
Z[ J], the vacuum expectation value of the real scalar fieldB, in the presence of
the external source can be found as

〈B〉J = δW[ J]

δJB
= 1

Z[ J]

∫
[dϕ]B exp

(
i

h

∫
d4x L[ J]

)
, (20)

with

W[ J] = (h/ i ) ln(Z[ J]). (21)

Let us now take the vacuum expectation value of Eq. (18). In the limitJB → 0,
to the lowest-order approximation inh, we obtain the self-consistency equation as

1

2
e2v3+ e2〈VµVµ〉v + ie〈Ē E〉 = 0. (22)

After the momentum cutoffp2 = 32 in the momentum integral, the expectation
values〈VµVµ〉 and〈Ē E〉 in Eq. (22) will be finite quantities. We find

〈Ē E〉 = −Tr SF (0)= 4mE

∫
d4 p

(2π )4

1

p2+m2
E

= imE

2π2

3√32+m2
E −m2

E ln
3+

√
32+m2

E

mE

 ,

〈VµVµ〉 = gµνDµν(0)=
∫

d4 p

(2π )4

−igµν

p2+m2
V

(
gµν + pµpν

m2
V

)

= 3

8π2

3√32+m2
v −m2

V ln
3+

√
32+m2

V

mV

 . (23)

Substituting Eqs.(16) and (23) into the self-consistency equation (22), we have

v2 = 1

4π2

[
3
√
32+ e2v2− e2v2 ln

3+√32+ e2v2

ev

]
. (24)
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From this equation, we can finally obtain the nonvanishing vacuum expectation
value of the real scalar field. Sincev is determined by the self-energy of the Dirac
spinor and the gauge field, we conclude that either the gauge symmetry or the
supersymmetry breaks down dynamically.

3. THE RESTORATION OF GAUGE SYMMETRY AND
SUPERSYMMETRY AT FINITE TEMPERATURES

In the previous section we have established the self-consistency equation for
the order parameter〈B〉 = v and examined dynamical breaking of gauge and su-
persymmetry. If a corresponding equation at finite temperatures can be established
then we can investigate gauge and supersymmetry behavior at finite temperatures
by solving the self-consistency equation. We wish to find such a temperatureTc at
which the vacuum expectationv reduces to zero and the gauge symmetry and the
supersymmetry will be restored again.

It is well known that, at finite temperatures, all physically interesting quantities
such as Green’s functions in a system are given not by the vacuum-to-vacuum
transition amplitude as in the usual field theories, but by the statistical average
defined by (Dolan and Jackiw, 1974)

Gβ(x1, x2, . . . , xn) = Tr{exp(−βH )T [ϕ(x1)ϕ(x2) · · ·ϕ(xn)]}
Tr exp(−βH )

(25)

whereβ is proportional to the inverse of temperature andH denotes the Hamiltonian
of the system. In the field theory the Green function at finite temperatures (Bernard,
1974) can be written as

Gβ(x1, x2, . . . , xn) = 1

zβ [ J]

δnZβ [ J]

δJ(x2) · · · δJ(xn)
, (26)

whereZβ [ J] is the generating functional at finite temperatures

Zβ [ J] =
∫

[dϕ] exp

{∫ β

0
dτ
∫

d3x LE[ J]

}
. (27)

HereL E[ J] denotes the LagrangianL[ J] in the Euclidean space. Here and after-
wards we takeh = 1.

The important observation in field theory at finite temperatures is the fact
that the finite-temperature Green’s functons satisfy the same differential equations
as the zero-temperature Green’s functions except that they satisfy a periodic (an-
tiperiodic for the fermion case) boundary condition for an imaginary timeτ , and
the momentump = (p0, Ep) has to be replaced by

p = (ωn, Ep), (28)
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with

ωn = (2n+ 1)π/β, (n integer for the fermions), (29)

ωn = 2nπ/β, (n integer for the bosons). (30)

So, at finite temperatures, by using Eq. (23), the self-consistency equation (22)
changes to

e2v2(β) = I1+ I2, (31)

with

I1 = −6e2

β

+∞∑
n=−∞

∫
d3Ep

(2π )3

1

(2nπ/β)2+ Ep2+ e2v2(β)
= I ′1+ I ′′1 , (32)

I2 = 8e2

β

+∞∑
n=−∞

∫
d3Ep

(2π )3

1

[(2n+ 1)π/β]2+ Ep2+ e2v2(β)
= I ′2+ I ′′2 ,

(33)

in which

I ′1 = −
3e2

2π2

∫ ∞
0

|Ep|2d|Ep|
(|Ep|2+ e2v2(β))1/2

, (34)

I ′′1 = −
3e2

π2

∫ ∞
0

|Ep|2d|Ep|
(|Ep|2+ e2v2(β))1/2{exp[β(|Ep|2+ e2v2(β))1/2] − 1} ,

(35)

I ′2 =
2e2

π2

∫ ∞
0

|Ep|2d|Ep|
(|Ep|2+ e2v2(β))1/2

, (36)

I ′′2 = −
4e2

π2

∫ ∞
0

|Ep|2d|Ep|
(|Ep|2+ e2v2(β))1/2{exp[β(|Ep|2+ e2v2(β))1/2] + 1} .

(37)

The integrations in Eqs. (34) and (36) are divergent. As before, introducing a
momentum cutoff3 one can make the integration finite. The result is

I ′1 = −
3e2

4π2

[
3
√
32+ e2v2(β)− e2v2(β) ln

3+
√
32+ e2v2(β)

ev(β)

]
, (38)

I ′2 =
e2

π2

[
3
√
32+ e2v2(β)− e2v2(β) ln

3+
√
32+ e2v2(β)

ev(β)

]
. (39)

We are interested in the supersymmetry behavior at high temperatures and wish
to find the critical temperatureTc at which the order parameter〈B(β)〉 = v(β)



P1: FYJ

International Journal of Theoretical Physics [ijtp] pp975-ijtp-472193 October 6, 2003 17:59 Style file version May 30th, 2002

1752 Wang and Song

tends to zero. So the integrations in Eqs. (35) and (37) can be calculated in the
approximationv(β) = 0. In this approximation the integrations in Eqs. (35) and
(37) turn out to be

I ′′1 =
3e2

π2

∫ ∞
0

|Ep|d|Ep|
1− exp(βc|Ep|) = −

e2

2β2
c

, (40)

I ′′2 = −
4e2

π2

∫ ∞
0

|Ep|d|Ep|
1+ exp(βc|Ep|) = −

e2

3β2
c

. (41)

Substituting Eqs. (38)–(41) into Eq. (31) and taking the limitv(βc)→ 0, one gets

Tc = 1

βc
=
√

3

10

3

π
. (42)

Thus, we have found the critical temperatureTc at which the order parameter
〈B(β)〉 tends to zero, andmV = mE = mB = 0, which means that the dynamical
breaking of the gauge symmetry and the supersymmetry at zero temperature can
be restored.

The gauge symmetry and the supersymmetry restoration at finite temperatures
can also be shown from the statistical average of the auxiliary fields behavior at
finite temperatures. Following from Fayet (1976) and Fayet and Ferrara (1977)
(with ξ = 0), we can obtain the auxiliary fields as

F = G = 0, D = −1

2
eB2. (43)

So at finite temperatures, the vacuum expectation of the auxiliary fields changes
to

〈F(β)〉 = 〈G(β)〉 = 0, 〈D(β)〉 = −e

2
v2(β). (44)

We see from Eq. (44) that, whenT → Tc, v(β)→ 0. So the statistical average of
the auxiliary fields tend to zero at the critical temperature. This is another sign of
the supersymmetry restoration at finite temperatures.

In the model of Das and Kaku (1978), the vacuum expectation value of the
auxiliary field D is given by

〈D〉 = −e

2
v2− ξ, (45)

wherev is the vacuum expectation of the scalar fieldB andξ denotes the coefficient
of the Fayet–Iliopoulos term. We see from Eq. (45) that at finite temperatures
〈D(β)〉 does not vanish whenv(β) = 0, becauseξ is temperature-independent.
Thus, in the model of Das and Kaku (1978) the supersymmetry cannot be restored
at finite temperatures.
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4. CONCLUSIONS

The dynamical breaking of the gauge symmetry and the supersymmetry is
studied in terms of the NJL mechanism. Starting from the supersymmetric Higgs
model that involves a vector multiplet and a left-handed chiral multiplet in its
Lagrangian, we have shown that the contribution of self-energy part of the Dirac
spinor and the gauge vector to the self-consistency equation for the order parameter
generate different dynamical masses for different fields and leads to mass splitting
between bosons and fermion in the supermultiplet, and, hence, the gauge symmetry
and the supersymmetry break down dynamically at zero temperature. We have
shown, by solving the self-consistency equation for the order parameter at finite
temperatures, that the gauge symmetry and the supersymmetry that is broken
dynamically at zero temperature can be restored at a critical temperature.

ACKNOWLEDGMENT

This work is supported by the Education Foundation of Education Ministry
of China under Grant No. 1999014105.

REFERENCES

Bernard, C. W. (1974).Physics Review D9, 3312.
Cahill, K. (1991).Physics Letters B269, 129.
Das, A. and Kaku, M. (1978).Physics Review D18, 4540.
Dicus, D. A. and Tata, X. R. (1984).Nuclear Physics B239, 237.
Dolan, L. and Jackiw, R. (1974).Physics Review D9, 3320.
Fayet, P. (1976).Nuovo Cimento A31, 626.
Fayet, P. and Ferrara, S. (1977).Physics Reports32, 249.
Fayet, P. and Iliopoulos, J. (1974).Physics Letters B51, 461.
Fuchs, J. (1984).Nuclear Physics B246, 279.
Girardello, L., Grisaru, M. T., and Salomonson, P. (1981).Nuclear Physics B178, 331.
Hove, L. V. (1982).Nuclear Physics B207, 15.
Ilipoulos, J. and Zumino, B. (1974).Nuclear Physics B76, 310.
Kumar, S. (1990).Journal of Physics A: Mathematics and General23, 1127.
Lurie, D. and Macfarlane, A. J. (1964).Physics Review B136, 816.
Nambu, Y. and Jona-Lasinio, G. (1961).Physics Review122, 345.
O’raifeartaigh, L. (1975).Nuclear Physics B96, 331.
Salam, A. and Strasdee, J. (1974).Physics Letters B49, 465.
Song, H. S. and Xu, G. N. (1993a).Journal of Physics A: Mathematics and General26, 2699.
Song, H. S. and Xu, G. N. (1993b).Journal of Physics A: Mathematics and General26, 4463.
Wang, D. F., Yu, H. D., and Song, H. S. (2002).Journal of Dalian University of Technology42, 26 (in

chinese).
Xu, G. N. and Song, H. S. (1992).Journal of Physics A: Mathematics and General25, 4941.


